
Dr. SaltStack

or: How I Learned to Stop Worrying and Replace the Cron

Gareth J. Greenaway

● Founder & organizer of SoCal Linux Expo
● Occasional co-host of FLOSS Weekly
● Core contributor to Salt Stack project
● http://www.twitter.com/garethgreenaway

Scheduling Jobs
*under Un*x like operating systems.

What we want

1. Easily schedule a job.
2. Easy notification of job completion.
3. Different notification depending on job.
4. Schedule remotely across many nodes.
5. Enable, Disable, and Move Jobs.

What We Want

A few different options

at

echo "cc -o foo foo.c" | at 11:45 jan 31

● Available on most Linux & *BSD systems,
even Windows and OS X.

● Simple syntax to schedule jobs
● Management tools: at,atq, and atrm
● Notifications via email

Pros

Cons

● One time run.
● Node specific management.

What We Want

1. Easily schedule a job. ✱
2. Notification of job completion. ✱
3. Different notification depending on job. ✖
4. Remotely across many nodes.✖
5. Enable, Disable, and Move Jobs. ✖

cron

MAILTO: user@example.com
00 20 * * * /home/user/command.sh

mailto:user@example.com

MAILTO: user@example.com
00 20 * * * /home/user/command.sh

MAILTO: admin@example.com
59 23 * * * /usr/sbin/service apache restart

mailto:user@example.com
mailto:admin@example.com

Pros

● Also available on most Linux & *BSD
systems, and Windows and OS X.

● Relatively simple syntax to schedule jobs
● Management tools: crontab
● Notifications

Cons

● Still node specific management.
● Having to check the man page for which

column is which

What We Want

1. Easily schedule a job. ✱
2. Notification of job completion. ✱
3. Different notification depending on job. ✱
4. Remotely across many nodes. ✖
5. Enable, Disable, and Move Jobs. ✖

Alternatives

Manage ‘at’ jobs with Salt

‘at’

Execution Module

salt '*' at.at <timespec> <cmd> [tag=<tag>]
[runas=<user>]
Example:
salt 'node1' at.at 12:05am '/sbin/reboot' tag=reboot

Schedule ‘at’ job

‘at’

State Execution Module

rose:
 at.present:
 - job: 'echo "I love saltstack" > love'
 - timespec: '9:09 11/09/13'
 - tag: love
 - user: jam

Schedule ‘at’ job.

Manage ‘cron’ with Salt

Similar execution and
state modules for cron

salt 'node1' cron.set_job root '*' '*' '*' '*' 1
/usr/local/weekly

date > /tmp/crontest:
 cron.present:
 - user: root
 - minute: 5

Still Limitations
of both at and cron

Simply Use Salt

Disclaimer:
Some features presented currently

available in the development
branch but will be in future

releases of Salt.

Powerful Scheduler

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True

Schedule Configured on Minion

schedule:
 job1:
 function: state.sls
 cron: '*/5 * * * *'
 args:
 - httpd
 kwargs:
 test: True

More precise by mimicking Cron.

Available in 2014.7

schedule:
 job1:
 function: state.sls
 when: 'Monday 8:15pm'
 args:
 - httpd
 kwargs:
 test: True

And more clear.

Available in 2014.7

Multiple runs.
schedule:
 job1:
 function: state.sls
 when:
 - ‘Monday 8:15pm'
 - ‘Tuesday 3:00pm’
 args:
 - httpd
 kwargs:
 test: True Available in 2014.7

Another example
schedule:
 job1:
 function: cmd.run
 when: 'Monday 8:15pm'
 args:
 - 'logger -t salt < /proc/loadavg'
 kwargs:
 stateful: False
 shell: \bin\sh

What We Want

1. Easily schedule a job. ✱
2. Notification of job completion. ?
3. Different notification depending on job. ?
4. Remotely across many nodes. ?
5. Enable, Disable, and Move Jobs. ?

Notifications

Salt Returners

* 2014.7 release
* 2015.2 release

* Development branch

Examples of returners:
Syslog, MySQL, PostgreSQL, Redis

SMTP, XMPP, HipChat, Slack, Nagios

Scheduler + Returners

schedule:
 job1:
 function: status.procs
 when: ‘8:15pm'
 returner: xmpp

Notifications

Returner Configuration
on Minion

xmpp.recipient: to-jid@gmail.com
xmpp.jid: from-jid@gmail.com/salt
xmpp.password: 12345

XMPP Returner Configuration

What We Want

1. Easily schedule a job. ✱
2. Notification of job completion. ✱
3. Different notification depending on job. ?
4. Remotely across many nodes. ?
5. Enable, Disable, and Move Jobs. ?

Different Notifications

Available in 2015.2

Alternative Returner
Configuration

alt.xmpp.recipient: different-jid@gmail.com
alt.xmpp.jid: from-jid@gmail.com/salt
alt.xmpp.password: 12345

XMPP Returner Configuration

schedule:
 job1:
 function: status.procs
 when: '8:15pm'
 returner: xmpp
 return_config: alt

Notifications

xmpp.jid: from-jid@gmail.com/salt
xmpp.password: 12345
john.xmpp.recipient: john@gmail.com
bob.xmpp.recipient: bob@gmail.com
dba.xmpp.recipient: dba@company.com

XMPP Returner Configuration

What We Want

1. Easily schedule a job. ✱
2. Notification of job completion. ✱
3. Different notification depending on job. ✱
4. Remotely across many nodes. ?
5. Enable, Disable, and Move Jobs. ?

Remotely Across Many
Nodes

Remote Execution
System

salt -G 'role:webserver' schedule.add
apache_restart function='apache.signal' args=”
restart” seconds=3600
salt 'cache*' schedule.add varnish_purge
function=varnish.purge' when=”[’10:00am’,’10:
00pm’]”

Schedule Execution Module (2014.7)

Configuration
Management System

apache_restart:
 schedule.present:

- function: apache.signal
- args: restart
- seconds: 3600

Schedule State Module (2014.7)

Schedule Jobs
job1:
 schedule.present:
 - function: state.sls
 - args:
 - httpd
 - kwargs:
 test: True
 - when:
 - Monday 5:00pm
 - Tuesday 3:00pm
 - Wednesday 5:00pm

What We Want

1. Easily schedule a job. ✱
2. Notification of job completion. ✱
3. Different notification depending on job. ✱
4. Remotely across many nodes. ✱
5. Enable, Disable, and Move Jobs. ?

Disable, Enable and Move

Schedule Execution
Module

Available in 2014.7

schedule.disable_job

salt -G ‘role:webserver’ schedule.disable_job
apache_restart

Available in 2014.7

schedule.enable_job

salt -G ‘role:webserver’ schedule.enable_job
apache_restart

Available in 2015.2

schedule.move_job

salt ‘webserver_new’ schedule.move_job
apache_restart webserver_new

Other Available Functions

● schedule.copy
● schedule.delete
● schedule.disable
● schedule.enable
● schedule.list

● schedule.modify
● schedule.purge
● schedule.reload
● schedule.save
● schedule.run_job

2014.7 2015.2

What We Want

1. Easily schedule a job. ✱
2. Notification of job completion. ✱
3. Different notification depending on job. ✱
4. Remotely across many nodes. ✱
5. Enable, Disable, and Move Jobs. ✱

So what can we
schedule?

Salt has almost 300* modules
and roughly

3000* module functions.

* not all modules and functions available on all
systems.

Other Interesting
Scheduler Features

Available in 2014.7

Splay

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True
 splay: 15

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True
 splay:
 start: 10
 end: 15

Range
Available in 2014.7

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True
 range:
 start: 8:00am
 end: 5:00pm

Inverted Range
Available in 2014.7

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True
 range:
 invert: True
 start: 8:00am
 end: 5:00pm

return_job
Available in 2015.2

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True
 return_job: True

Available in 2015.2

metadata

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True
 return_job: True
 metadata:

foo: bar

until
Available in develop

schedule:
 job1:
 function: state.sls
 seconds: 3600
 args:
 - httpd
 kwargs:
 test: True
 until: ‘12/31/2015 11:59pm’

Other reasons to use
Salt?

Job 1
00 20 * * * /home/user/command.sh
Job 2
00 30 * * * /home/user/command2.sh

Typical crontab

A better way

Combine the commands

Job 1
00 20 * * * /home/user/command.sh &&
/home/user/command2.sh

Third Script, running both
commands

Job 1 & Job 2
00 20 * * * /home/user/command3.sh

Run commands from a
Salt State

require
watch
prereq
use
onchanges
onfail

Dependencies and Requisites

require_in
watch_in
prereq_in
use_in
onchanges_in
onfail_in

schedule:
 run_jobs:
 function: state.sls
 when: ‘8:00 pm’
 args:
 - run_jobs.sls

schedule

state file
job1:
 cmd.run:
 -args: /home/user/command1.sh
job2:
 cmd.run:
 - args: /home/user/command2.sh
 - require:
 - cmd: job1

Scheduling Jobs
with Salt Stack

Thank You!

Any questions?

